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Abstract.

In a recent paper we developed exact nonlocal conditional moment equations

for transient flow in bounded domains driven by random forcing terms (sources, initial
head, and boundary conditions). Whereas our conditional mean equations took into
account the randomness of forcing terms, our conditional second moment equations did

not. We do so in this brief addendum.

1. Introduction

In a recent paper we [Tartakovsky and Neuman, 1998] de-
veloped exact nonlocal conditional moment equations for tran-
sient flow in bounded domains driven by random forcing terms
(sources, initial head, and boundary conditions). Whereas our
conditional mean equations took into account the randomness
of forcing terms, our conditional second moment equations did
not. We do so in this brief addendum. All symbols used in our
derivation are given by Tartakovsky and Neuman [1998].

Before proceeding, we would like to note that Appendix A
of Tartakovsky and Neuman [1998] contains several typograph-
ical errors [see Tartakovsky and Neuman, 1999].

2. Exact Second Moment Expressions

When the source function f(x, ¢), initial head distribution
H(x), head H(x, t) on Dirichlet boundary segments I, and
flux Q(x, t) across Neumann boundary segments I', are ran-
dom but uncorrelated with each other, our equations for the
second conditional moment C,.(x,y, t, s) = (h'(x, t)h'(y,
s)). of hydraulic head i (x, t) take the form (see appendix for
derivation)

Vi KKx))VCre(X, ¥, £, 8) + udx,y, s)Vh(x, 1)),
+px,y, 8, 8)] +A(x, y, t,5)

achc(xa Y, t7 S)

= S(x) Y (D

subject to the initial and boundary conditions

Chc(xa Yy, 0) S) :BC(X7 Yy, S) XEQ

Cr(x, 5, t,8) = Cux, ¥, t, ) xeTlp )

[<K(X)>£chh6(x’ y’ t? s) + ML’(X7 y’ S)Vx<h(xa t))(,
+ pc(xs y, t’ S)] : H(X) = D(‘(X’ y, t’ S) X € l—‘N'
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Here S(x) is a deterministically prescribed specific storage;
K(x) is a random field of hydraulic conductivities; (g).. signifies
ensemble mean of a random field g; g’ is a zero mean fluc-
tuation about (g)_;

u(x,y,s) = —f J r.(z, 7) - VAK' (x)G(z,y,s — 7). dzdT
0 JO

- f " f Vidh(z, 7))o (K'OK (2)V,Glz, y, 5 — 7)), dz dr:
0 Q

3)
pC(X’ y’ t? s)

= —J“f r/(z, VK (x)Vih'(x, 1)
-G(z,y,s — 7)) .dzdr
—JJ' Vih(z, 7)){K'(x)K'(z)

-V,G(z,y,s — DVIh'(x, t)). dz dr

+ ff (f'(z, DK (N)Vh' (x, )G (2, y, 5 — 7)), dz dr
0JQ

+ f S(z)(Hy(z)K' (x)V,h'(x, 1)G(z,y, s)). dz
Q

- JSJ' n’(z)(H'(z, 7K' (x)K(z)V,G(z,y,s — 7)
“VIn'(x, t)).dz dt
+ ff (Q'(z, NK'x)V'(x,1)G(z,y,s — 7). dz dr. 4)

T'n

A., B, C., and D, are forcing coefficients defined as
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Adx, y, t, S)=f f(f’(xy 0 f'(z, 7))
0 Ja

(G(z,y,s —7)).dzdr 5)

B.(x,y, s) = j S(z)(Hy(x) Hy(2)(G(z, y, 5)). dz (6)
O

CC(X’ y’ t’ S) = _J

0

f (H'(x, ) H' (2, 7))
I'p

(K(z)V,G(z,y,s — 1)), n(z) de dr (7)

D.x,y, t,5) = f j (Q'(x, NQ'(z, 7))
0 JI'y

(G(z,y, s = 7)) dzdT; ®)

G(y, x, t — 7) is a random Green’s function introduced in
Appendix A of Tartakovsky and Neuman [1998]; and the resid-
ual flux r(x, ¢) is given explicitly by their (15) or implicitly by
their (23).

When the forcing terms f, H,, H, and Q are deterministic,
A, =B.=C, =D, =0 and (1)-(4) reduce to (48)—(53) of
Tartakovsky and Neuman [1998]; we note that a minus sign is
missing in front of the leading integral in their (52) and (53).

It has been pointed out by Tartakovsky and Neuman [1998]
that, for purposes of recursive approximation, it is advanta-
geous to work with implicit rather than explicit expressions. An
implicit alternative to the explicit expression for u.(x, y, ) in
(3) is given by (B10) and (B11) of Tartakovsky and Neuman
[1998]. Their implicit expressions (B8)—(B9) for p.(x, y, 7, )
now take the form (see appendix) of the differential equation

VIKK(y) Vypl(x, 5, 1, 5)] + Vi[a(x,y, 1, 5)
+ Vh(y, s)BIy, x, )] = Vir(y, s)rl(x, 1)

apl(x,y, t,5)

+yix,y,1,5) = 8(y) o )

subject to the initial and boundary conditions

pc(x’ Y, ¢, 0) = E(X, Y, t) ye& Q (10)
pc(x, Yy, t’ S) = F(X? Yy, t’ S) y € l—‘D (11)
n'[(K(y).V,pi(x, y, £, 8) + a(x, y, £, 5)
+ Vy<h(y1 S))chT(% X, t) - rc(y> S)TCT(X, t)]
=G(x,y,t,5) ye 'y (12)

where B.(y, x, t) is given by (B11) of Tartakovsky and Neuman
[1998];
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ax,y, t,s)
= JDJ (K'(x)K'(y)V,VIG(z,y, s — T)r.(z, 7)
o Jo
VIR (x, 1)), dz d7
ff (K'(x)K'(y)K'(2)V,V]G(z, y,s — 7)
o Jo
*VAh(z, 7). Vih'(x, 1)) dz d7
+ff (f'(z, DK (x)K'(y)Vh' (x, 1)
o Jo
‘VyG(z,y,s — 7). dzdr
" f SEHY K (0K (1) V" (%, 1)
o
VIG(z,y, 5)). dz
—J'J (H'(z, 7K' (x)K'(y)K(2)
o Jry

-VyV,TG(z, y,s — 1n(z)VIh'(x, t)). dz dt

+ j | f (0 (z, VK" (x)K' (y)V,h' (x, 1)
0 T'n

VIG(z,y,s — 7). dz dr; (13)
and
Y(X,y,1,8) = th (f"(z, ) f'(y, )K" (x)
o Jo
V.G(z, X, t — 7)) dz dr (14)
E(x,y, 1) = f S(z)(H(z) H(y) K" (x)
o
V,.G(z, X, t — 7). dz (15)
F.(x,y,t,5) = ftf (H'(z, T)H'(y, s){K'(x)
0 Jry
V.G(z, X, t — 7)) dz (16)
G.(x,y,t,5) = ftf (Q'(z, 1)Q'(y, s)K'(x)
0 Iy
V,.G(z, X, t — 7)), dz dr. (17)

When the forcing terms f, H,, H, and Q are deterministic,
Y. = Ec = F. = G, = 0 and (9)-(13) reduce to (B8)-(B9)
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of Tartakovsky and Neuman [1998]; we note again that a minus
sign is missing in front of the first integrals in their (B9) and
(B11).

3. Recursive Second Moments Approximations

Recursive conditional approximations for C,,. were derived
for the case of deterministic driving terms in Appendix D of
Tartakovsky and Neuman [1998]. A perturbation expansion (in
the measure oy of the standard deviation of Y = In K) of
(1)-(8) leads to the following ith-order approximation of
Che(x,y, t,s) fori = 2,

Kox) S 1, (Y"(x)) V,Cl(x, ¥, 1, 5)

n=0

+ 2 ul(x, y, $)VhT(x, 1)) + p(x, ¥, 1, S)]

n=0

hc(x yat S)

+A0(x, y, 1, 5) = S(x) Y, (18)
subject to
Ci(x,y,0,s)=BY%x,y,s) xEQ
Cx,y,t5) =CP%x, y,t,5) xer,

L1 .
Ko(x) 2 3 (V")) V,Ch”

n=0

(x, ¥, 2, 5) (19)

+ 2 ul'(x, y, )R (x, ), + p(X, ¥, 1, S)]

n=0

: n(X) = Di'i)(xa Y, t7 S) X € l—‘N'

Note that there are no lower-order contributions to C,,.. The
five leading terms in the perturbation expansion of u_. are given
by (D5), (D6), (D15), and (D16) of Tartakovsky and Neuman
[1998]. It is easily seen from (4) that the three leading terms
(i =0, 1, 2) in the expansion of p, are zero [Tartakovsky and
Neuman, 1998, equation (D7)]. Perturbation expansion of (9)
yields the following equations for p¢* and p{*,

VIKs(y)V,p ' (x, y, 1, )] + VI[V(h Oy, 5)).BY'(y, x, 1)]

apP(x, y, t,5)

=S(y) s

(20)
and
VKV (x,y, 1, 9)] + Vial(x, y, 1, 5) + V(R
(3, DB (v, x, 1) + V(h(y, ) B (y, x, 1)]
— VyTrﬂz’(y, HrP(x, 1) + yP(x, y, ¢, 5)

Wix, y, 1, S)
s

=S(y ) (21)

Here from (13),
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al(x,y,t,5) = —f f VKGO z, y, s — 7)),
0 Jo

V2, 7))l (x,y, 2, 1) dz dT

0 Jo

VH{Gz,y,s — 7). dzdT

+ f S(z)ai(x,y, z, )VGz, y, 5)). dz (22)

o

- f f Ko(2)V,V(GOz, y, s — 7)),
0 JI'p

‘n(z)a (x,y, z,t, 1) dz dr

+ J f all(x,y, z,t, )VKGVz, y, s — 7). dz d,
0 Jry

where the vector a{*)(x, y, z, t) is given by (D11) of Tartak-
ovsky and Neuman [1998], and the remaining kernels are vec-
tors derived in appendix,

a5(x, y, 2, 1, 7) = Ko(x) Kg(y)(Y ()Y (y)).

: f | f Clz, 7 & IVIGUE x t — ), dEds  (23)
A

o, y, 7, 1) = Keld) Key)(¥' ()" (1)),

: f Culz, EVLGOE, x, 1), dE (24)
0%, y, 7, £, 7) = —Ke(0) Key)(¥' ()" (1)),

: f [ f Culz, 7 & HVIGU(E, x, ¢ — ), dE s (25)

A

af)(x,y, z, 1, 7) = Ka(x) Kg(y) (Y (X)Y' (y)).

: f t f Colt, 75 & $)V(GUE, x, ( — ). dEds. (26

The third- and fourth-order approximations of . in (20) and
(21) are given by (D12)-(D14) of Tartakovsky and Neuman
[1998]. It follows from (14) that the fourth-order approxima-
tion of v, in (21) is

t
v9(x,y,t,5) = f f Clz, 1y, s)pP(z, x, t, 7) dz d.
0 Q

(27)

Expanding the forcing coefficients in (5)—(8) in powers of oy
yields fori = 2
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AV, y,t,5)
) J' f Cix, t; 2, (G z, y, s — 7)) dzdr  (28)
0 Q
BU(x,y, s) = f S(z)Cry(x; 2)(G(z, y, 5)). dz (29)
Q
Clx, y, 1, 5) = —JJ Culx, t; 2, 1) K(2)
0 I'p
: 1 i (i—n)
S 2| T Y @) TGz, y, s — 1)
n=2
—p(z,y,s — 7)) n(z) dz dr (30)

DY(x,y,t,s) = f f Co(x, t;2, I(GV(z,y,s — 7). dzd7, (31)
0 JI'n

where C,, C Hyr Cy, and C,, are covariances of the driving
forces f, H,, H, and Q, respectively; and p{” is given by (47)
of Tartakovsky and Neuman [1998]. Evaluating (28)—(31) re-
quires computing higher than zeroth-order approximations of
the ensemble mean Green’s function which can be problem-
atic. In what follows, we propose two alternative strategies for
evaluating (28)—(31).

3.1. Casel

Variances associated with C, Cp, Cpy, and C, are much
smaller than the variance o3 of the log-hydraulic conductivity.
Then an approximation (G),. ~ (G*’)_ in (5)—(8) can be used
so that

AP (x,y,1,5) = f f Cix, t;2, )G (z,y,s — D). dzdr  (32)
0 JQ

BP(x,y,s) = f S(z)Cy,(x; (G (2, y, 5)). dz (33)

o

) 1
Cgl)(x’ Y, t, S) = _f f CH(Xy t;z, T)KG(Z) 7‘ <Y”(z)>c
o Jrp

-VAGz,y,s — 7). n(z) dz dr (34)

D(x,y,t,5) = f f Co(x,t;2, (G"V(z,y,s — 7). dzdT
T'n
O (35)

and A = B = DO = 0 fori = 3.

3.2. Case 2

Variances associated with C,, C Hy Cy, and Cy, are of the
same order of magnitude as the variance o3. Then setting
(G), ~ G, where the latter Green’s function is defined by
(19)—(22) of Tartakovsky and Neuman [1998], yields from (28)-

G
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AV(x, y, 1, 8) = J

0

j Cix, t; 2, NGz, y,s — 1) dz dT
Q

(36)
BY(x,y,s) = f S(2)Cryx; )Gz, y, 5) dz (7
Q
Cx,y.1,5) = —f f Culx, t; 2, 1) Kg(2)
0 I'p
o :
: 2 [rT' (Y'(2) V.G "z, y, s — 7)
n=0 ’

- p£i72>(z’ Yy, s — 'T):| * n(Z) dedT (38)

DO(x,y, t,s) = J J Co(x, t; 2, T)
0 T'n
-Gz, y,s — 1) dz dr. (39)

Higher-order approximations of G, can be readily evaluated.
Moreover, since G(? = (GV), (36)—(39) are exact to second
order in . The second-, third-, and fourth-order approxima-
tions of the flux covariance matrix are given, as before, by
(D17)~(D19) of Tartakovsky and Neuman [1998].

Appendix

To derive implicit expressions for the second moment of
hydraulic head, we recall that the head fluctuation /' (x, t)
satisfies [Tartakovsky and Neuman, 1998, equations (B1) and

(B2)]
V- [K(x)Vh'(x, 1) + K' (x)V(h(x, 1), — (K'(x)VA'(x, 1)).]

+f(x, 1) = S(x) W (A1)
subject to the initial and boundary conditions
h'(x,0) = Hyx) x€Q;
h'(x,t)=H'(x,t) x€Tp; (A2)
[K(x)VA'(x, 1) + K'(x)V{h(x, 1)),
—(K'(x)VA'(x, 1)) ]-n(x) = Q'(x, 1) xETy.

The solution of (A1) and (A2) can be expressed in terms of the
random Green’s function G(y, x, t — 7), introduced in ap-
pendix A of Tartakovsky and Neuman [1998] as their (BS)

h'(x, t)=f j (K'(y)V,h'(y, s)).- V,G(y, x, t — 1) dy d7
0 Q
- flf K'(y)V{h(y, ). V,G(y, x,t — 1) dy d

+ J ff’(y, 7G(y,x,t — 1) dydr
0o Ja



TARTAKOVSKY AND NEUMAN: TECHNICAL NOTE

+f S(YHyy)G(y, x, t) dy
—J j H'(y, ) K(y)V,G(y, x, t — 7) - n(y) dy d
0 T'p

+ ftj Q'(y, NGy, x,t — 1) dy dT (A3)

Multiplying (A1) and (A2) by 4’(y, s) and taking conditional
ensemble mean leads directly to (1). The mixed conditional
moments p.(x, y, £, s) = (K'(x)V,h'(x, t)h'(y, s)). and u.(x,
y, s) = (K'(x)h'(y, s)). are obtained by multiplying (A3),
written in terms of y and s, with K'(x) and K’ (x)V,2'(x, ©),
respectively. By the same token the mixed conditional mo-
ments AC(X, y, £, S) = <f’(xa t)h,(y7 S)>c7 Bc(X’ Y, S) =
(Hy (3, $))es Co(x, ¥, £, 5) = (H'(x, )h'(¥, )., and
D.(x,y. 1, s) = (Q'(x, Dh'(, $)), are given by (5)~(8).

Rewriting (A1) and (A2) in terms of (y, s), postmultiplying
by K'(x)VZh'(x, t), and taking conditional ensemble mean
leads to (9)—(17). An explicit expression for e (X, y, t, §) =
(K'(x)K'(y)V,h'(y, s)Vih'(x, t)). in (13) is obtained by
operating with K’ (x) K' (y)V, 2’ (x, t)V] on (A3) after replac-
ing (x, t) by (y, s) and taking conditional ensemble mean. The
driving term y,.(x, y, £, s) = (f'(y, s) K'(x) V&' (X, 1)), in (9)
is derived by operating with f'(y, s)K'(x)V, on (A3) and
taking conditional ensemble mean.
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The vectors (23)—(26) are obtained upon operating with
K' (0K () f' (2, DV, K'(OK'(y) Hy(2)Vy, K'(x)K'(y) H'
(z, 1)V, and K'(x)K'(y)Q'(z, 1)V, on (A3), respectively;
taking the conditional ensemble mean; and retaining the terms
of o} order.
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